Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Bull Exp Biol Med ; 172(3): 364-367, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1616180

ABSTRACT

The article presents a theoretical rationale and a clinical case of relief of post-COVID ventilation failure by inhalation of Xe and O2 gas mixture. Pneumonitis of coronavirus etiology transforms saturated phospholipids of surfactant into a solid-ordered phase, which disrupts surface tension, alveolar pneumatization, and alveolar-capillary gas exchange. Using molecular modeling (B3LYP/lanl2dz; GAUSSIAN09), we demonstrated that Xe atom due to the van der Waals dispersion interaction increases the distance between the phospholipid acyl chains providing a phase transition from the solid-ordered to liquid phase and restored the surface-active monolayer surfactant film. A clinical case confirmed that short-term inhalations of the Xe and O2 gas mixture relieved manifestations of ventilation insufficiency and increased SpO2 and pneumatization of the terminal parts of the lungs.


Subject(s)
COVID-19/complications , Oxygen/administration & dosage , Respiratory Insufficiency/therapy , Respiratory Therapy/methods , Xenon/administration & dosage , Administration, Inhalation , Anesthetics, Inhalation/administration & dosage , COVID-19/etiology , COVID-19/rehabilitation , COVID-19/therapy , Drug Combinations , Humans , Lung/drug effects , Lung/physiopathology , Male , Middle Aged , Respiration/drug effects , Respiratory Insufficiency/etiology , Russia , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
2.
J Ethnopharmacol ; 285: 114838, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1509996

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Keguan-1, a new traditional Chinese medicine (TCM) prescription contained seven Chinese herbs, is developed to treat coronavirus disease 19 (COVID-19). The first internationally registered COVID-19 randomised clinical trial on integrated therapy demonstrated that Keguan-1 significantly reduced the incidence of ARDS and inhibited the severe progression of COVID-19. AIM OF THE STUDY: To investigate the protective mechanism of Keguan-1 on ARDS, a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model was used to simulate the pathological state of ARDS in patients with COVID-19, focusing on its effect and mechanism on ALI. MATERIALS AND METHODS: Mice were challenged with LPS (2 mg/kg) by intratracheal instillation (i.t.) and were orally administered Keguan-1 (low dose, 1.25 g/kg; medium dose, 2.5 g/kg; high dose, 5 g/kg) after 2 h. Bronchoalveolar lavage fluid (BALF) and lung tissue were collected 6 h and 24 h after i.t. administration of LPS. The levels of inflammatory factors tumour necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1ß, keratinocyte-derived chemokine (KC or mCXCL1), macrophage inflammatory protein 2 (MIP2 or mCXCL2), angiotensin II (Ang II), and endothelial cell junction-associated proteins were analysed using ELISA or western blotting. RESULTS: Keguan-1 improved the survival rate, respiratory condition, and pathological lung injury; decreased the production of proinflammatory factors (TNF-α, IL-6, IL-1ß, KC, and MIP2) in BALF and the number of neutrophils in the lung tissues; and ameliorated inflammatory injury in the lung tissues of the mice with LPS-induced ALI. Keguan-1 also reduced the expression of Ang II and the adhesion molecule ICAM-1; increased tight junction proteins (JAM-1 and claudin-5) and VE-cadherin expression; and alleviated pulmonary vascular endothelial injury in LPS-induced ALI. CONCLUSION: These results demonstrate that Keguan-1 can improve LPS-induced ALI by reducing inflammation and pulmonary vascular endothelial injury, providing scientific support for the clinical treatment of patients with COVID-19. Moreover, it also provides a theoretical basis and technical support for the scientific use of TCMs in emerging infectious diseases.


Subject(s)
Acute Lung Injury , Antiviral Agents/pharmacology , Bronchoalveolar Lavage Fluid , COVID-19 , Drugs, Chinese Herbal/pharmacology , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Capsules , Chemokine CXCL2/analysis , Coix , Forsythia , Interleukin-1beta/analysis , Interleukin-6/analysis , Lonicera , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Mortality , Morus , Peptide Fragments/analysis , Prunus armeniaca , Respiration/drug effects , SARS-CoV-2 , Treatment Outcome , Tumor Necrosis Factor-alpha/analysis
3.
J Ethnopharmacol ; 280: 114488, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1397458

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has a long history in the prevention and treatment of pandemics. The TCM formula Lung Cleansing and Detoxifying Decoction (LCDD), also known as Qing Fei Pai Du Decoction, has been demonstrated effective against Coronavirus Disease 2019 (COVID-19). AIM OF THE STUDY: This work aimed to elucidate the active ingredients, targets and pathway mechanism of LCDD related to suppression of inflammatory, immunity regulation and relaxation of airway smooth muscle for the treatment of COVID-19. MATERIALS AND METHODS: Mining chemical ingredients reported in LCDD, 144 compounds covering all herbs were selected and screened against inflammatory-, immunity- and respiratory-related GPCRs including GPR35, H1, CB2, B2, M3 and ß2-adrenoceptor receptor using a label-free integrative pharmacology method. Further, all active compounds were detected using liquid chromatography-tandem mass spectrometry, and an herb-compound-target network based on potency and content of compounds was constructed to elucidate the multi-target and synergistic effect. RESULTS: Thirteen compounds were identified as GPR35 agonists, including licochalcone B, isoliquiritigenin, etc. Licochalcone B, isoliquiritigenin and alisol A exhibited bradykinin receptor B2 antagonism activities. Atractyline and shogaol showed as a cannabinoid receptor CB2 agonist and a histamine receptor H1 antagonist, respectively. Tectorigenin and aristofone acted as muscarinic receptor M3 antagonists, while synephrine, ephedrine and pseudoephedrine were ß2-adrenoceptor agonists. Pathway deconvolution assays suggested activation of GPR35 triggered PI3K, MEK, JNK pathways and EGFR transactivation, and the activation of ß2-adrenoceptor mediated MEK and Ca2+. The herb-compound-target network analysis found that some compounds such as licochalcone B acted on multiple targets, and multiple components interacted with the same target such as GPR35, reflecting the synergistic mechanism of Chinese medicine. At the same time, some low-abundance compounds displayed high target activity, meaning its important role in LCDD for anti-COVID-19. CONCLUSIONS: This study elucidates the active ingredients, targets and pathways of LCDD. This is useful for elucidating multitarget synergistic action for its clinical therapeutic efficacy.


Subject(s)
Biosensing Techniques/methods , COVID-19 Drug Treatment , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Cell Line, Tumor , Chalcones/pharmacology , Cricetulus , Drugs, Chinese Herbal/analysis , Ephedrine/pharmacology , HEK293 Cells , Humans , Immunity/drug effects , Inflammation/metabolism , Lung Diseases/metabolism , Muscle, Smooth/drug effects , Receptors, G-Protein-Coupled/metabolism , Respiration/drug effects , Signal Transduction/drug effects
4.
Nitric Oxide ; 116: 7-13, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1356375

ABSTRACT

BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19). METHODS: This is an interventional study to determine whether NO at 160 parts-per-million (ppm) inhaled for 30 min twice daily might be beneficial and safe in non-intubated COVID-19 patients. RESULTS: Twenty-nine COVID-19 patients received a total of 217 intermittent inhaled NO treatments for 30 min at 160 ppm between March and June 2020. Breathing NO acutely decreased the respiratory rate of tachypneic patients and improved oxygenation in hypoxemic patients. The maximum level of nitrogen dioxide delivered was 1.5 ppm. The maximum level of methemoglobin (MetHb) during the treatments was 4.7%. MetHb decreased in all patients 5 min after discontinuing NO administration. No adverse events during treatment, such as hypoxemia, hypotension, or acute kidney injury during hospitalization occurred. In our NO treated patients, one patient of 29 underwent intubation and mechanical ventilation, and none died. The median hospital length of stay was 6 days [interquartile range 4-8]. No discharged patients required hospital readmission nor developed COVID-19 related long-term sequelae within 28 days of follow-up. CONCLUSIONS: In spontaneous breathing patients with COVID-19, the administration of inhaled NO at 160 ppm for 30 min twice daily promptly improved the respiratory rate of tachypneic patients and systemic oxygenation of hypoxemic patients. No adverse events were observed. None of the subjects was readmitted or had long-term COVID-19 sequelae.


Subject(s)
COVID-19 Drug Treatment , Hospitalization , Nitric Oxide/administration & dosage , Pneumonia, Viral/drug therapy , Respiration/drug effects , Administration, Inhalation , COVID-19/complications , COVID-19/virology , Dose-Response Relationship, Drug , Humans , Nitric Oxide/pharmacology , Nitric Oxide/therapeutic use , Pneumonia, Viral/complications
5.
Clin Transl Sci ; 14(3): 1062-1068, 2021 05.
Article in English | MEDLINE | ID: covidwho-1078950

ABSTRACT

Ruxolitinib is an anti-inflammatory drug that inhibits the Janus kinase-signal transducer (JAK-STAT) pathway on the surface of immune cells. The potential targeting of this pathway using JAK inhibitors is a promising approach in patients affected by coronavirus disease 2019 (COVID-19). Ruxolitinib was provided as a compassionate use in patients consecutively admitted to our institution for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. Inclusion criteria were oxygen saturation less than or equal to 92%, signs of interstitial pneumonia, and no need of mechanical ventilation. Patients received 5 mg b.i.d. of ruxolitinib for 15 days, data were collected at baseline and on days 4, 7, and 15 during treatment. Two main targets were identified, C-reactive protein (CRP) and PaO2 /FiO2 ratio. In the 31 patients who received ruxolitinib, symptoms improved (dyspnea scale) on day 7 in 25 of 31 patients (80.6%); CRP decreased progressively from baseline (79.1 ± 73.4 mg/dl) to day 15 (18.6 ± 33.2, p = 0.022). In parallel with CRP, PO2/FiO2 ratio increased progressively during the 3 steps from 183 ± 95 to 361 ± 144 mmHg (p < 0.001). In those patients with a reduction of polymerase chain reaction less than or equal to 80%, delta increase of the PO2/FiO2 ratio was significantly more pronounced (129 ± 118 vs. 45 ± 35 mmHg, p = 0.02). No adverse side effects were recorded during treatment. In patients hospitalized for COVID-19, compassionate-use of ruxolitinib determined a significant reduction of biomarkers of inflammation, which was associated with a more effective ventilation and reduced need for oxygen support. Data on ruxolitinib reinforces the hypothesis that targeting the hyperinflammation state, may be of prognostic benefit in patients with SARS-CoV-2 infection. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Some evidence suggest that patients affected by coronavirus disease 2019 (COVID-19) present an exuberant inflammatory response represented by a massive production of type I interferons and different pro-inflammatory cytokines. Nonetheless, as for the present, there are no proven therapeutic agents for COVID-19, in particular anti-inflammatory and antiviral, with a significant and reproducible positive clinical response. WHAT QUESTION DID THIS STUDY ADDRESS? Targeted therapeutic management of pro-inflammatory pathways appears to be a promising strategy against COVID-19, and ruxolitinib, due to its established broad and fast anti-inflammatory effect, appears to be a promising candidate worthy of focused investigations in this field. WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? Ruxolitinib rapidly reduces the systemic inflammation, which accompanies the disease, thereby improving respiratory function and the need of oxygen support. This effect may contribute to avoid progression of the disease and the use of invasive ventilation. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Data on ruxolitinib contributes the reinforcement of the hypothesis that it is crucial to counteract the early hyperinflammation state, particularly of the lungs, induced by COVID-19 infection.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Compassionate Use Trials , Janus Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Respiration/drug effects , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Nitriles , Pyrimidines , Respiration, Artificial
6.
Encephale ; 46(3S): S93-S98, 2020 Jun.
Article in French | MEDLINE | ID: covidwho-1065058

ABSTRACT

Although the "panic" word has been abundantly linked to the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic in the press, in the scientific literature very few studies have considered whether the current epidemic could predispose to the onset or the aggravation of panic attacks or panic disorder. Indeed, most studies thus far have focused on the risk of increase and aggravation of other psychiatric disorders as a consequence of the SARS-CoV-2 epidemic, such as obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and generalized anxiety disorder (GAD). Yet, risk of onset or aggravation of panic disorder, especially the subtype with prominent respiratory symptoms, which is characterized by a fear response conditioning to interoceptive sensations (e.g., respiratory), and hypervigilance to these interoceptive signals, could be expected in the current situation. Indeed, respiratory symptoms, such as coughs and dyspnea, are among the most commonly associated with the SARS-CoV-2 (59-82% and 31-55%, respectively), and respiratory symptoms are associated with a poor illness prognosis. Hence given that some etiological and maintenance factors associated with panic disorder - i.e., fear conditioning to abnormal breathing patterns attributable or not to the COVID-19 (coronavirus disease 2019), as well as hypervigilance towards breathing abnormalities - are supposedly more prevalent, one could expect an increased risk of panic disorder onset or aggravation following the COVID-19 epidemic in people who were affected by the virus, but also those who were not. In people with the comorbidity (i.e., panic disorder or panic attacks and the COVID-19), it is particularly important to be aware of the risk of hypokalemia in specific at-risk situations or prescriptions. For instance, in the case of salbutamol prescription, which might be overly used in patients with anxiety disorders and COVID-19, or in patients presenting with diarrhea and vomiting. Hypokalemia is associated with an increased risk of torsade de pointe, thus caution is required when prescribing specific psychotropic drugs, such as the antidepressants citalopram and escitalopram, which are first-line treatments for panic disorder, but also hydroxyzine, aiming at anxiety reduction. The results reviewed here highlight the importance of considering and further investigating the impact of the current pandemic on the diagnosis and treatment of panic disorder (alone or comorbid with the COVID-19).


Subject(s)
Betacoronavirus , Coronavirus Infections/psychology , Pandemics , Panic Disorder/psychology , Pneumonia, Viral/psychology , Anxiety/etiology , Anxiety/psychology , Anxiety Disorders/drug therapy , Anxiety Disorders/epidemiology , Anxiety Disorders/physiopathology , Anxiety Disorders/psychology , COVID-19 , Catastrophization , Comorbidity , Coronavirus Infections/epidemiology , Dyspnea/etiology , Dyspnea/psychology , Female , Humans , Hypokalemia/etiology , Male , Panic Disorder/drug therapy , Panic Disorder/epidemiology , Panic Disorder/physiopathology , Pneumonia, Viral/epidemiology , Psychotropic Drugs/adverse effects , Psychotropic Drugs/therapeutic use , Renin-Angiotensin System/physiology , Respiration/drug effects , SARS-CoV-2 , Stress, Psychological/etiology , Stress, Psychological/physiopathology , Terminology as Topic , Torsades de Pointes/chemically induced , Torsades de Pointes/etiology
7.
Encephale ; 46(3S): S116-S118, 2020 Jun.
Article in French | MEDLINE | ID: covidwho-1065050

ABSTRACT

French recommendations have been proposed for psychotropics use and possible adaptations during the SARS-CoV-2 epidemic. Between uncertainties linked to the lack of data and speculations about possible benefits of psychotropics against the coronavirus, we propose here elements allowing to base the pharmacotherapeutic decisions potentially useful in Covid+ patients with psychiatric disorders.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Repositioning , Pandemics , Pneumonia, Viral/drug therapy , Psychotropic Drugs/therapeutic use , Anti-Anxiety Agents/adverse effects , Anti-Anxiety Agents/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Dyspnea/chemically induced , Dyspnea/etiology , Humans , Hypnotics and Sedatives/adverse effects , Hypnotics and Sedatives/therapeutic use , Mental Disorders/drug therapy , Mental Disorders/epidemiology , Pneumonia, Viral/epidemiology , Psychotropic Drugs/adverse effects , Psychotropic Drugs/pharmacology , Respiration/drug effects , Risk Assessment , SARS-CoV-2 , COVID-19 Drug Treatment
8.
Immunol Lett ; 228: 122-128, 2020 12.
Article in English | MEDLINE | ID: covidwho-909223

ABSTRACT

As of October 2020 management of Coronavirus disease 2019 (COVID-19) is based on supportive care and off-label or compassionate-use therapies. On March 2020 tocilizumab - an anti-IL-6 receptor monoclonal antibody - was suggested as immunomodulatory treatment in severe COVID-19 because hyperinflammatory syndrome occurs in many patients similarly to the cytokine release syndrome that develops after CAR-T cell therapy. In our retrospective observational study, 20 severe COVID-19 patients requiring intensive care were treated with tocilizumab in addition to standard-of-care therapy (SOC) and compared with 13 COVID-19 patients receiving only SOC. Clinical respiratory status, inflammatory markers and vascular radiologic score improved after one week from tocilizumab administration. On the contrary, these parameters were stable or worsened in patients receiving only SOC. Despite major study limitations, improvement of alveolar-arterial oxygen gradient as well as vascular radiologic score after one week may account for improved pulmonary vascular perfusion and could explain the more rapid recovery of COVID-19 patients receiving tocilizumab compared to controls.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Respiration/drug effects , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/pathology , Combined Modality Therapy , Critical Care , Female , Humans , Male , Middle Aged , Receptors, Interleukin-6/antagonists & inhibitors , Retrospective Studies , SARS-CoV-2 , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL